Presumptive Democratic presidential nominee Hillary Clinton was in Springfield, Ill., Wednesday where she sought to use the symbolism of a historic landmark to draw parallels to a present-day America that is in need of repairing deepening racial and cultural divides.

The Old State Capitol — where Abraham Lincoln delivered his famous "A house divided" speech in 1858 warning against the ills of slavery and where Barack Obama launched his presidential bid in 2007 — served as the backdrop for Clinton as she spoke of how "America's long struggle with race is far from finished."

Episode 711: Hooked on Heroin

1 hour ago

When we meet the heroin dealer called Bone, he has just shot up. He has a lot to say anyway. He tells us about his career--it pretty much tracks the evolution of drug use in America these past ten years or so. He tells us about his rough past. And he tells us about how he died a week ago. He overdosed on his own supply and his friend took his body to the emergency room, then left.

New British Prime Minister Theresa May announced six members of her Cabinet Wednesday.

Amid a sweeping crackdown on dissent in Egypt, security forces have forcibly disappeared hundreds of people since the beginning of 2015, according to a new report from Amnesty International.

It's an "unprecedented spike," the group says, with an average of three or four people disappeared every day.

The Republican Party, as it prepares for its convention next week has checked off item No. 1 on its housekeeping list — drafting a party platform. The document reflects the conservative views of its authors, many of whom are party activists. So don't look for any concessions to changing views among the broader public on key social issues.

Many public figures who took to Twitter and Facebook following the murder of five police officers in Dallas have faced public blowback and, in some cases, found their employers less than forgiving about inflammatory and sometimes hateful online comments.

As Venezuela unravels — with shortages of food and medicine, as well as runaway inflation — President Nicolas Maduro is increasingly unpopular. But he's still holding onto power.

"The truth in Venezuela is there is real hunger. We are hungry," says a man who has invited me into his house in the northwestern city of Maracaibo, but doesn't want his name used for fear of reprisals by the government.

The wiry man paces angrily as he speaks. It wasn't always this way, he says, showing how loose his pants are now.

Ask a typical teenage girl about the latest slang and girl crushes and you might get answers like "spilling the tea" and Taylor Swift. But at the Girl Up Leadership Summit in Washington, D.C., the answers were "intersectional feminism" — the idea that there's no one-size-fits-all definition of feminism — and U.N. climate chief Christiana Figueres.

Copyright 2016 NPR. To see more, visit http://www.npr.org/.

Arizona Hispanics Poised To Swing State Blue

4 hours ago
Copyright 2016 NPR. To see more, visit http://www.npr.org/.

Pages

Nobel Goes To Scientists Who Took Chemistry Into Cyberspace

Oct 9, 2013
Originally published on October 9, 2013 11:08 am

This year's Nobel Prize for chemistry is shared by three international scientists, who moved chemistry out of the lab and into the world of computing.

Together they developed tools for studying complex molecules — such as enzymes in the human body and plants' photosynthesis machinery — inside cyberspace.

These computerized tools allow scientists to design drugs more quickly and cheaply by doing their experiments with computer programs instead of inside rats and monkeys.

All three scientists — Martin Karplus of the University of Strasbourg and Harvard University, Michael Levitt of Stanford University, and Arieh Warshel of the University of Southern California — were born overseas. But they met up at Harvard in the early 1970s to start their work.

They were all focused on the same task: watching molecules perform their chemical dances with the help of a computer.

The secret to their success was marrying two branches of physics that typically oppose each other. "Quantum mechanics and Newtonian physics don't usually agree or work together," Sven Lidin of the Nobel Prize committee said. "The laureates made them friends."

Chemical reactions happen at lightning speeds, so it's very difficult to study the details in the lab in real time.

But if you can write computer programs that simulate the reactions, you can slow them down and figure out exactly how they work. Then you can start to optimize them. For instance, you can make more efficient solar cells, better drugs to fight cancer or cheaper catalytic converters that break down air pollutants.

That's exactly what Karplus was trying to do back in 1972, as a young professor at Harvard University. He turned to quantum physics for help with the task. But he was soon stuck because quantum mechanical calculations require massive computing power — even more than is easily available today. Back then, the situation was even more daunting. Many computers were still programmed with punch cards.

Then Warshel came to Karplus' lab as a postdoctoral fellow. He had just finished his doctorate at Weizmann Institute in Israel, where he and Levitt had been developing models like the ones Karplus was working on. But instead of using quantum mechanics, Warshel and Levitt made use of classical mechanics.

Pioneered by Isaac Newton in the 17th century, classical mechanics requires much less computing power than quantum mechanics, but it isn't always as accurate. That's where quantum mechanics shines.

Then Karplus and Warshel had an insight: Why not combine the two branches of physics — use quantum mechanics to simulate parts of a molecule that need high accuracy, but then classical mechanics for everything else?

The strategy allowed Karplus and Warshel to make some of the first models of small molecules in the computer, including one of vitamin A.

But their approach was still quite limited. It couldn't tackle problems like drug design and photosynthesis because these reactions involve giant molecules, called enzymes.

That's where Levitt's research came in to help. After two years at Harvard, Warshel reunited with Levitt in Israel and later Cambridge University. By 1976, the two had cracked how to model molecules of almost any size in the computer.

This advance opened the door for scientists all over the world to study a vast array of chemical reactions, such as how enzymes in our body break down toxins, convert sugar into energy and interact with drugs.

"What we've done ... is to develop methods that allow us to see how proteins actually work," Warshel said Wednesday. "It's like seeing a watch and wondering how it actually works. If you have an enzyme that digests food, you want to understand how it's happening ... to design drugs, or, in my case, satisfy my curiosity."

Copyright 2013 NPR. To see more, visit http://www.npr.org/.